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Quasi-periodic state and transition to turbulence
in a rotating Couette system
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(Received 1 March 1996 and in revised form 17 August 1998)

An experimental study of flow transition in a rotating Taylor–Couette system was
made by investigating the spatio–temporal velocity field (axial velocity component)
by the ultrasonic Doppler method. The flow fields for the range of Reynolds numbers
9 < R∗ < 40 (where R∗ = R/Rc; Rc is the critical Reynolds number for Taylor vortex
flow) were decomposed by two-dimensional Fourier transform and the orthogonal
decomposition technique, and intensities of coherent structural modes were quanti-
tatively obtained. The variation of the intensities of various modes with respect to
Reynolds number clearly shows a transition behaviour of the quasi-periodic state
resulting from the wavy vortex mode and the modulating waves, which is found to
disappear suddenly at about R∗ = 21. A new mode was found after the disappearance
of the quasi-periodic state, which in turn disappears at R∗ = 36. Beyond this regime,
there was no coherent structure found except for the stationary Taylor vortices and
so-called broad-band component, which is attributed to chaos. The total energy occu-
pation (the number of modes which occupy 90% of the total energy) and the global
entropy support such transition behaviour quantitatively. After the disappearance of
the newly found mode, the number of modes needed to compose the velocity field is
still finite and small – about 40–50. We call this flow state ‘soft turbulence’.

1. Introduction
Following the investigation by Coles (1965), the flow between rotating cylinders

(Taylor–Couette system) has often been used to investigate the transition from laminar
to turbulent fluid motion (see Di Prima & Swinney 1985). The following sequence of
flow regimes has been observed in narrow-gap systems with a rotating inner cylinder
and a stationary outer cylinder.

At very low Reynolds numbers (R) one finds two-dimensional circular Couette
flow (CF) which (for infinitely long cylinders) has the velocity profile V = (0, Vθ(r), 0).
At R = Rc Couette flow becomes unstable to Taylor-vortex flow (TVF), a three-
dimensional, time-independent flow structured into a set of stacked axisymmetric
counter-rotating toroidal vortices. On increasing R past a second critical Reynolds
number Rw , an instability sets in which deforms a Taylor vortex to produce a time-
dependent non-axisymmetric flow called wavy vortex flow (WVF). On increasing R
further an additional wave mode appears which modulates WVF; this flow is called
modulated wavy vortex flow (MWV). Coughlin et al. (1991) reported that there are
two different modes for MWV and that for some parameter ranges they coexist. The
GS mode (Gorman & Swinney 1979) characteristically extends over the roll and is
a wave component for a modulation, leading to a periodic flattening of the outflow
boundary of the vortices. The ZS mode (Zhang & Swinney 1985) appears near the
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outflow region with a higher phase speed inducing the appearance of a ripple on the
roll. Experimental confirmation of their coexistence was reported by Takeda, Fischer
& Sakakibara (1993a).

At the next transition (R∗ = R/Rc ≈ 12) a broad peak appears in the velocity power
spectra and there is a rise in the background noise level (Fenstermacher, Swinney &
Gollub 1979). This transition has been carefully studied using nonlinear time series
techniques by Brandstater & Swinney (1987) who conclude that the flow dynamics
fit the description of deterministic chaos, even though the transition itself seems not
to be understood mathematically. Consequently it seems safe to classify the resulting
flow as chaotic wavy vortex flow (CWV).

On further increasing the Reynolds number many investigators have observed
that the azimuthal waves disappear at some critical Reynolds number and that the
flow is then turbulent, even though the Taylor vortex structure remains (Coles 1965;
Burkhalter & Koschmieder 1973; Fenstermacher et al. 1979; Walden & Donnelly
1979). The resulting flow is called turbulent Taylor vortex flow (TTV). Qualitatively
it might be described as having a small ‘turbulently’ varying flow field superimposed
on an axisymmetric mean field.

Thus far the transition from CWV to TTV has not been studied with the same
degree of care as the transition to CWV. The objective of the present investigation
is to clarify (i) how CWV behaves at higher R until its disappearance, and (ii)
what occurs on the transition to TTV. Since this transition involves a strong change
of a spatio–temporal nature, it is important to investigate the flow field in the
spatio-temporal domain. We used an ultrasound Doppler technique to obtain spatio–
temporal velocity fields and analysed them by two-dimensional Fourier analysis and
orthogonal decomposition (principal component analysis). Both methods yield spectra
which give information on the energy of the flow field. We then discuss the transition
sequence from laminar flow to turbulence based on a quantitative evaluation of these
two kinds of spectra, and suggest that TTV be interpreted as ‘soft’ turbulence (see
Heslot, Castaing & Libchaber 1987).

2. Experimental setup
We used the same experimental setup as in our previous investigation (Takeda

et al. 1993b). Briefly, our Taylor–Couette system (figure 1) has a radius ratio η =
Ri/Ro = 0.904 (Ri is the radius of the inner cylinder, 94.0 mm, and Ro that of the
outer cylinder, 104.0 mm) and aspect ratio Γ = L/d = 20 (d = Ro − Ri, L is the fluid
height). Only the inner cylinder is rotated. The Reynolds number R is defined as
R = ΩRid/ν (Ω is the frequency of rotation of the inner cylinder, ν is the kinematic
viscosity), and the reduced Reynolds number is defined R∗ = R/Rc. In the present
configuration, the critical Reynolds number Rc for the onset of TVF is 134.57 (see Di
Prima & Swinney 1985). The liquid used in these experiments was a mixture of water
and 30% glycerol.

The measurements were carried out with an ultrasonic velocity profile monitor,
which can obtain a time series of instantaneous velocity profiles (Takeda 1986, 1990;
Teufel et al. 1992). The ultrasonic transducer was affixed to the outer surface of one of
the stationary endwalls, being perpendicular to it with its centre on the outer cylinder
wall position. The diameter of the ultrasonic beam was 5 mm. This setup measures
the velocity profile of the axial velocity component as a function of axial position
and time, namely Vz(z, t) at the outer wall position. Thus the measuring volume of
one point is one half of a disk with a radius 2.5 mm and a thickness 0.75 mm. The
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Figure 1. Schematic of the experimental system.

present system measures velocities at 128 spatial positions. The measurement of the
velocity profile was focused on the spatial range from 40 mm to 135 mm (i.e. from
z = 4d to 13.5d) from the endwall in order to eliminate any endwall effect. This setup
of the UVP required a measuring time of 130 ms for each profile for a velocity level
of a few mm s−1. A total of 1024 successive profiles were recorded in the instrument’s
memory and then transferred to disk for later analysis.

We performed the measurements for R∗ ranging from approximately 10 to > 40 for
most runs. This covers the flow regimes MWV, for which onset is at R∗ ≈ 9, CWV,
TTV etc. For most of the measurements we started from the highest R∗ and decreased
it in small steps. This protocol was used because we felt that no new unstable flow
mode would be excited by changing the Reynolds number in this way, and that the
waiting time between measurements could be minimized.

3. Experimental results
3.1. Display of velocity profiles

Since we obtain the axial component of the velocity field as a function of position
and time, the results are displayed in colour density plots like those in figure 2.
When presented in this form, the abscissa is time and the ordinate is axial position.
The velocity values are colour-coded: red-violet for positive values (motion directed
away from the transducer) and blue-green for negative. A horizontal band (wavy or
not) of the same flow direction (reddish or blueish) corresponds to a single Taylor



84 Y. Takeda

Re =7.1

Re =13.6

Re =17.9

Re =24.7
134

40

Po
si

ti
on

 (
m

m
)

0 66.5
Time (s)

Figure 2. Examples of measured velocity fields for four Reynolds numbers. Displayed are 256
profiles over a 66.5 s time period and 128 positional positions for 74 mm. Velocity values are colour
coded as given at the top. Red-yellow is for positive and blue-green for negative velocity.

vortex. Figure 2 shows a clear change of flow structure: WVF at R∗ = 7.1, CWV at
R∗ = 13.6 and 17.9, and TTV at R∗ = 24.7. The wavy structure at R∗ = 7.1 indicates
that the roll moves up and down due to a propagating azimuthal wave. At R∗ = 13.6
modulation due to the GS mode can be clearly seen, with a diminished amplitude
at R∗ = 17.9. For R∗ > 21, coherent oscillatory motion disappears and again the
boundaries between vortices become flat (on average), although small-scale motion
remains inside each roll and its boundaries.

3.2. Time and space domain Fourier analysis

We performed a one-dimensional Fourier analysis of the data set: power spectrum and
energy spectral density. These spectra were computed by fast Fourier transformation
(FFT) in the time and space domains independently, yielding space-dependent power
spectra and time-dependent energy spectra for all the data concerned. Although
certain characteristics were observed to be space-dependent in the power spectra and
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Figure 3. A space-averaged power spectrum (R∗=13.6). The original velocity field
is in figure 2.
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Figure 4. A time-averaged energy spectral density for the same data as in figure 3.

time-dependent in the energy spectra, we focused our attention on space averages of
the power spectrum (figure 3) and time averages of the energy spectrum (figure 4).
Clear peak structures were seen in both kinds of spectra although the structure was
more complex in the power spectrum as figure 3 shows. We found the energy spectrum
to be less informative in this study, since all the peaks fall on higher harmonics of the
fundamental mode, which corresponds to the axial wavelength of the Taylor vortex.

An analysis of the power spectra was carried out by identifying each peak in
a spectrum as either a fundamental, a harmonic of a fundamental, or a linear
combination of two or more fundamental frequencies. We found that there are three
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Figure 5. Variation of the space-averaged power spectra on the (R∗, f)-plane. The power value is
colour coded as in figure 2 but on a relative scale.

39.1

9.7R
ed

uc
ed

 R
ey

no
ld

s
nu

m
be

r, 
R

*

0 127
Wavenumber (arbitrary units)

Figure 6. Variation of the time-averaged energy spectral density on the (R∗, k)-plane. Colour
coding is the same as for figure 5.

intrinsic wave modes for the MWV regime: the WVF, GS and ZS modes. Furthermore
we found that all three modes can coexist. We also found that a significant change
in the flow characteristics occurs at R∗ = 21, where the azimuthal wave mode (WVF
mode) disappears. That is, the magnitude of power and energy of higher harmonic
modes behaves very differently for R∗ >21 than for R∗ < 21. We have reported
this finding in Takeda et al. (1993a). Figure 5 is a two-dimensional colour plot of
the space-averaged power spectra, as a function of frequency and Reynolds number.
Because our measurement consisted of irregular increments of the Reynolds number,
the iso-power lines are not smooth in this plot. A quasi-continuous curve nevertheless
corresponds to a single temporal mode. In a plot such as this, the appearance and
disappearance of various temporal modes and their harmonics at various Reynolds
number are better displayed. Thus a drastic change of behaviour which occurs at
R∗ ≈ 21 is clearly seen in this figure. Many temporal modes disappear at this
Reynolds number and only a few higher modes remain beyond this point. Figure 6 is
constructed similarly to figure 5 but shows the energy spectral density as a function
of Reynolds number. In this case, the iso-power lines are straight and vertical since
the wavenumber of each mode does not change with Reynolds number. This figure
thus shows the same behaviour of each mode versus R∗ as in figure 5.

3.3. Mode identification

We mainly used one-dimensional Fourier analysis for mode identification. As seen in
figure 5, peaks of the same mode form curved lines, since the peak frequency depends
on the rotational speed (or equivalently the Reynolds number). Moreover, these lines
appear and disappear, and they thus reflect the sequence of flow transition from WVF
to turbulence. By using this plot, peaks in each power spectrum have been assigned
and identified, and then intrinsic modes in the flow were detected. The intensity of
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these peaks was evaluated by estimating their areas, and subsequently the variation
with respect to R∗ was obtained. From this analysis we found the coexistence of
several modes and the disappearance of the WVF and MWV modes (Takeda et al.
1993b).

3.4. Two-dimensional Fourier analysis

For investigating the nature of the quasi-periodic state quantitatively, a time-domain
Fourier analysis is not sufficient, since various spatial modes contribute to the same
peak in the power spectrum. It is therefore necessary to decompose the velocity field
with respect to space and time simultaneously, because the nature of this flow is
solely spatio–temporal. We used a two-dimensional Fourier transformation in this
study, since this flow configuration exhibits both spatial and temporal periodicity. A
two-dimensional FFT was computed on space and time coordinates as

S(f, k) =

∫ ∞
∞

∫ ∞
∞
Vz(z, t)e

−ikxe−iftdxdt, (3.1)

where f is a frequency and k a wavenumber. For the present experimental setup, with
respect to the space and time resolution, we can obtain a two-dimensional Fourier
spectrum on the plane of f = [0, 7.57] (Hz) and k = [0, 1.33] (mm−1) with resolutions
of [14.8 mHz, 0.010 mm−1].

An example of the results is given by the surface plot in figure 7. The resulting
Fourier spectrum has many isolated peaks reflecting the highly spatio–temporal nature
of the flow field. Each peak corresponds to a wave mode or its higher harmonic in a
two-dimensional sense. We adopted a ‘numerical filtering’ strategy to investigate the
flow: a filtered velocity field is constructed by setting to zero the power in unwanted
frequencies of the raw Fourier spectrum and then inverse Fourier transforming the
result. Using such a decompositional analysis, we found that the so-called broad-band
component, which is attributed to chaos, corresponds to a flow motion that moves
from vortex to vortex (Takeda, Fischer & Sakakibara 1994).

3.5. Orthogonal decomposition

Beyond the flow regime of the quasi-periodic state, the flow structure becomes less
periodic and Fourier analysis is less effective. For investigating such cases, an or-
thogonal decomposition is well suited since it allows maximal data compression by
catching characteristic features of the eigenmode. Moreover, the eigenvalue spec-
trum can be used to investigate the changing complexity of the flow with respect to
Reynolds number. Thus, the same data sets have been analysed using an orthogonal
decomposition technique. There exists in the literature a number of such techniques:
proper orthogonal decomposition (Lumley 1967, 1981; Berkooz, Holmes & Lumley,
1993), bi-orthogonal decompositon (Aubry, Chauve & Guyonnet 1994), singular sys-
tem analysis (Broomhead & King 1986), Karhunen–Loeve decomposition, empirical
eigenfunction decomposition (Sirovich 1991) etc. As made clear by Drazin & King
(1992), all these techniques involve a calculation and analysis of the eigenvalues
and eigenvectors of a covariance matrix constructed from the data, and hence are
equivalent.

From each measurement we obtain a time series of velocity profiles and store it in
an M×N = 1024(time)× 128(space) matrix V . Thus the jth row of V is the velocity
profile at time j, and the kth column of V is the velocity time series at spatial position
k. Most of the kinetic energy of the motion is contained in the Taylor-vortex motion.
We are mainly interested in the fluctuation around this state. Therefore, we compute
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Figure 7. A portion of the surface plot of the two-dimensional Fourier spectrum for the same
data as for figure 3. The insert is a k-spectrum at f = 0 for a clearer view.

and subtract the mean profile from the raw data matrix, compute the covariance
matrix of the result, and process it with the appropriate eigenvalue decomposition
algorithm. More specifically,

(i) Compute the mean profile v̄ from the raw data matrix:

v̄j =
1

M

M∑
i=1

Vij ,

where M is the length of the time series.
(ii) Subtract v̄ from each row of V and store the result in U: Uij = Vij − v̄j

(i = 1, . . . ,M, j = 1, . . . , N).
(iii) Compute the N ×N covariance matrix: C = U tU/M, where t denotes trans-

pose.
(iv) Compute the eigenvalues {ej}j=1,...,N and eigenvectors {fj}j=1,...,N of C .
(v) Sort the eigenvalues in descending order, i.e. e1 > e2 > · · · > eN .
Note that the eigenvectors are elemental spatial patterns of the fluctuation velocity

field. The eigenvalues yield information about the contribution of the corresponding
elemental patterns to the velocity field, and hence contribute information about the
number of important spatial degrees of freedom.

The computed eigenvalue spectrum and the eigenvectors corresponding to the
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eight largest eigenvalues are shown for R∗ = 13.6 in figure 8(a) and for R∗ = 24.7 in
figure 8(b). The vector labelled ‘mode index 0’ is the time-averaged velocity profile
(and hence corresponds to the basic TVF mode), which was included intentionally for
display purposes. In both cases, the eigenvalue spectrum shows a very sharp decrease
for the initial modes and thereafter shows a slow decay. This implies that only a
few modes are necessary to describe the velocity field. The shape of the eigenvectors
shows a low-frequency character for the first five modes at R∗ = 13.6 and for only
three modes at R∗ = 24.7. For mode indices 4, 5 and larger, the eigenvectors are high
frequency and can most likely be considered as flow noise.

4. Discussion
4.1. Two-dimensional Fourier analysis

4.1.1. WVF and MWV

Since each mode is well decomposed and resolved in the two-dimensional Fourier
spectrum as shown in figure 7, we obtained the magnitude of each individual mode
(spatio–temporal component) by estimating the volume of each peak. We did this to
quantitatively investigate the flow transition and the behaviour of these modes. For
the prominent peaks in all our data sets, a peak volume was estimated for a 3 unit by
3 unit area of the Fourier spectrum. This corresponds to a resolution of 44.4 mHz for
frequency and 0.03 mm−1 for wavenumber. Peaks on the f = 0 edge of the spectrum
plane correspond to the time-averaged velocity profile (Taylor vortices) and will not
be discussed here.

The variation of mode intensity, obtained as above, with respect to Reynolds
number is plotted in figure 9. The higher harmonics of wavenumber as well as of
frequency are observed to behave similarly to their basic modes. There are three
distinct groups of lines observed in this plot, which correspond to three coherent
modes of MWV. The first mode prevails at the lowest R∗ studied here (R∗ < 10).
It already has a significant intensity at the lowest Reynolds number, and is fairly
constant for R∗ < 21. The second group appears at R∗ slightly lower than 10 and
increases logarithmically until R∗ = 17, beyond which it stays constant. At R∗ ≈ 21,
both of these modes disappear quite suddenly. They are still observed at R∗ = 21–22,
but the decrease is sharp, by two orders of magnitude. Beyond this R∗, after the
disappearance of the above two modes, a new mode appears at R∗ = 23. The
intensity of this mode shows a smooth increase from its inception at R∗ = 23, reaches
a maximum at R∗ = 29, and then shows a steady decrease until its disappearance
at R∗ = 36. The behaviour described above for these three distinctive curves is the
same for all higher harmonic components within the group, although their intensities
are smaller than the basic and lower harmonic modes. That is, although similar, the
ascending sequence of harmonics is smaller in magnitude by a factor of roughly five.

The first mode described above is easily identified as the WVF mode, since it is
the only mode appearing for R∗ < 10. The second mode corresponds to one of two
kinds of MWV modes, namely GS or ZS. The onset of this mode is at approximately
R∗ = 11, which is in agreement with Gorman & Swinney (1979). The subsequent
sudden disappearance of these two modes can be considered to correspond to the
disappearance of the azimuthal wave. In fact, such a disappearance has been observed
often and reported earlier (for example, Koschmieder 1980; Walden & Donnelly 1979),
as an evidence of a transition to turbulence, in general, in this configuration.
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two-dimensional-Fourier spectra. Solid points are identified as intrinsic modes while the others
are their higher harmonics.

4.1.2. Fast azimuthal wave

To our knowledge, the third mode appearing at R∗ = 23 has not been reported
previously. The frequency of this mode is about 2.4 Hz (3.5fcyl), which is much higher
than those of WVF and MWV modes. Moreover the amplitude is localized near the
inflow and outflow boundaries and first identified using a two-dimensional Fourier
spectrum.

Studying a spatio–temporal plot of the raw velocity field, as given in figure 2, and
from the decomposed–reconstructed velocity field as shown in figure 10, this mode
is attributed to the small but fast variation of velocity prevailing on the basic TVF
rolls. Consequently we call this mode the ‘fast azimuthal wave’ mode. This mode has
not been discussed nor quantitatively well studied to date. Walden & Donnelly (1979)
reported that there appears a peak in the power spectrum for a similar range of R∗,
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Figure 10. Decomposed and reconstructed velocity field of the mode newly found for
23 < R∗ < 34. Colour coding is the same as for figure 2.
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Figure 14. Variation of space-averaged power spectra on the (R∗, f)-plane. The power value is
colour coded as in figure 2 but on a relative scale.

but only for a large aspect ratio system. They clearly stated that it would not appear
for a system of the present configuration, namely for Γ = 20.

We also observed in the power spectra at very high frequency, for the same range
of Reynolds number, a peculiar multiple peak (multiplet). Such a multiplet has also
been observed by Swinney and collaborators using laser-Doppler velocimetry (H. L.
Swinney, private communication; Reith 1981; Lewis 1996), but its nature has yet to
be made clear. The fast azimuthal wave mode has a different frequency from this
multiplet (and itself is not a multiplet); it requires further investigation. After the fast
mode disappears at R∗ = 40, the spectrum becomes continuous, showing no peak
structure, except for the broad-band component fB , which is discussed below.

4.2. Orthogonal decomposition

4.2.1. Eigenvalues and eigenvectors

Figure 11 shows the variation of the first 10 eigenvalues (mode index 0 is not
included) with respect to Reynolds number. The overall behaviour is obviously quite
similar to the one obtained by two-dimensional-FFT (figure 9). The first two modes
have significant intensity and are approximately constant for R∗ < 21 and then show a
sharp decrease at R∗ ≈ 21. A broad peak is also seen at R∗ ≈ 28. We note that unlike
Fourier modes, the eigenvectors of the orthogonal decomposition are data-dependent,
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Figure 11. Variation of eigenvalues with R∗ for the first 10 eigenmodes.

and hence it is not easy to trace the behaviour of a particular mode from the plot
of eigenvalue vs. Reynolds number. This is especially true when a transition in flow
behaviour occurs as a rather sharp change in flow character or the intensity of several
modes is comparable. In such cases one has to investigate the changing shapes of the
corresponding eigenvectors carefully. For example the top line (the strongest intensity)
of figure 11 does not obviously refer to the same mode as that prevailing for the
whole range studied here. From the results of Fourier analysis, it is understood that
there are two distinct modes: one for R∗ < 21 and the other for R∗ > 21.

4.2.2. Total energy occupation

We consider two ways to quantify the complexity of the eigenvalue spectrum to
make it easier to identify changes in flow behaviour as the Reynolds number is
varied. They are (i) total energy occupation – discussed here, and (ii) global entropy
– discussed below.

The total energy occupation (TEO) is defined as the number of modes which
occupy 90% of the total signal energy, designated here as N90. It is an index that
reflects the magnitude of the number of participating modes in the flow field:

N90∑
i=0

ei

Etotal
= 0.9, (4.1)

where Etotal =
∑N

i=0 ei.
Figure 12 shows the variation of TEO with respect to Reynolds number. The value

of N90 increases slowly from 2 to 7 over the range 9 < R∗ < 21. Then at R∗ = 21
there is a jump to N90 = 35. Thereafter there is a regression to a local maximum
at R∗ = 22, followed by a slight decrease. For R∗ less than 21, the eigenvectors of
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participating modes are more or less harmonic or at least highly periodic, while they
are not for the larger R∗.

A local maximum is reached at R∗ ≈ 22 and a local minimum at R∗ ≈ 28.
This reflects the broad peak behaviour of eigenvalues shown in figure 11. Since the
dominant mode disappears at R∗ = 22, the energy is shared by a larger number of
modes. This causes the value of N90 to increase. For 23 < R∗ < 32 a new coherent
mode appears, extracting a significant amount of energy from the flow, causing a
decrease in the value of N90. Beyond this point, N90 shows a gradual increase up to
55 at R∗ ≈ 100.

The large jump in N90 at R∗ = 21 indicates the transition from CWV flow to TTV,
and that the transition itself is quite sharp. However, the value of N90 itself remains
finite – on the order of 40 to 60.

4.2.3. Global entropy

Aubry et al. (1994) suggested another way to use the information in the eigenvalue
spectrum to identify changes in flow behaviour. They observed that the changing
distribution of energy in the spectrum could be usefully characterized by a single
number – the entropy of the spectrum (which they called global entropy). It is
calculated as follows:

(i) compute normalized eigenvalues and interpret as probabilities: pi = ei/Etotal;
(ii) compute global entropy as

H = − 1

lnN

N∑
i=0

pi ln pi.

H ranges from 0 to 1. H = 0 corresponds to the perfectly ordered case (only one
non-zero eigenvalue), and H = 1 corresponds to the completely disordered case (white
spectrum – all eigenvalues equal). Figure 13 shows the variation of global entropy
with respect to R∗: H is low, around 0.12, for R∗ less than 19; at around R∗ = 21, it
shows a fairly sharp peak which then decreases to 0.13 at around R∗ = 29, and then
increases again to about 0.4. This behaviour corresponds to the transition scheme
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Figure 13. Variation of global entropy versus R∗.

discussed earlier. Since there are two coherent waves in CWV, global entropy remains
small. When the intensity of these two modes decreases sharply, the entropy increases
sharply. When the third wave mode appears above R∗ ≈ 23, the entropy again
decreases, and then increases when this mode disappears. Such variation reflects the
notion of global entropy, that is, it increases when the number of participating modes
increases and as the energy becomes more uniformly distributed between these modes.
In this context, the behaviour is quite similar to TEO as shown in figure 12. In the
present case, a dip in the entropy at around R∗ ≈ 23 corresponds to the appearance of
a new mode that occupies a considerable fraction of the total energy. We observe this
concurrently as a dip of the curve in N90 versus R∗. It shows considerable fluctuation
beyond R∗ > 40, while the N90 curve in figure 12 is fairly smooth. The reason for this
fluctuation is as yet unclear. It is, however, noted that our measuring method can
resolve only up to 128 eigenmodes.

4.3. Broad-band component

For R∗ > 40, there is no clear peak structure in the Fourier spectra. The eigenvectors
from orthogonal decomposition also show no clear periodicity (except for the mean
profile, i.e. the stationary TVF structure). This indicates that there is no longer
any coherent azimuthal modal structure. Although we acknowledge that the time
resolution of our measuring system is not sufficiently high for a highly turbulent flow,
we nevertheless attempted to measure power spectra up to R∗ > 120, as shown in
figure 14 (p. 93). In this plot, no clear peak/line structure can be seen. However, a very
broad peak remains which is attributed to the broad-band component, fB . This may
indicate a characteristic of the flow transition: a broad-band component is generated
by some, as yet unknown, mechanism at relatively low Reynolds number. As R∗
increases, all coherent structure disappears and only this broad-band component
grows, seemingly leading to turbulence.
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Rayleigh–Bénard Taylor–Couette Characteristics

Convection TVF Spatially periodic or symmetric
Oscillation WVF Temporally oscillating
Chaos MWV/CWV Quasi-periodic/chaos
Transition Fast azimuthal wave mode Still coherent-structural
Soft turbulence Soft turbulence Non-structural with soft spectrum
Hard turbulence Hard turbulence Non-structural with hard spectrum

Table 1. Similarity in transition states and corresponding flow regimes for convection and
Taylor–Couette system.

4.4. Soft turbulence

In the range 40 < R∗ < 80, the values of N90 and the global entropy stay fairly
constant. However, N90 takes on the finite values 40–60, while the global entropy
is H = 0.6. From these results, we consider the flow for this range to be soft
turbulence; that is, there is no coherent azimuthal structure which characterizes the
flow field, and the energy is shared among a considerable number of modes, but
the number of participating modes is still too small to be countable. The concept of
‘soft’ turbulence was introduced by Heslot et al. (1987) from convection experiments
in helium gas. They investigated a scaling law of Nusselt number to Reynolds
number and showed that the transition from laminar to turbulent progressed through
various intermediate states as follows : convection–oscillation–chaos–transition–soft
turbulence–hard turbulence. They used ‘soft turbulence’ to distinguish it from ‘hard
turbulence’ based on the gradient of the scaling curve as well as the shape of the
temperature probability density function (PDF). Our transition scheme is quite similar
to this even though our flow configuration is quite different. The correspondence
between the two cases is given in table 1.

Classification of turbulence has been attempted using PDFs of temperature fluctu-
ations and by a scaling of flow characteristics with respect to Reynolds number (e.g.
Castaing et al. 1989; Christie & Domaradzki 1993), or velocity structure functions
(e.g. Benzi et al. 1995). They are mostly for a configuration of natural convection. We
attempted such a classification for the Taylor–Couette system. In the sequence, we use
the same terminology of ‘soft turbulence’. The terms ‘soft’ and ‘hard’ are often used in
the context of X-rays and neutron energy spectra. When these energy spectra extend
to higher energy, the spectrum is called ‘hard’. In contrast, when the fraction of the
low-energy component is dominant, the spectrum is called ‘soft’. In the present study,
our observation is based on the power and energy spectra. Similar features have been
seen in the space-averaged power spectrum, the time-averaged energy spectral density
and eigenvalue spectrum. The spectra tend to increase their fraction of the large
frequency or wavenumber portion at larger Reynolds number. This feature has been
evaluated in quantitative manner using TEO and global entropy of the eigenvalue
spectrum. For the ranges we classified as soft and hard turbulence, there exists a clear
difference in the number of participating modes so that such a classification could be
justified.

5. Conclusion
Spatio-temporal velocity fields, Vz(z, t), have been measured and analysed quantita-

tively using Fourier transform and orthogonal decomposition techniques to investigate



98 Y. Takeda

transition from laminar flow to turbulence in a rotating Couette system. The Reynolds
numbers studied here range from R∗ = 10 to 40, and one study to R∗ = 120. The
results of FFT analysis show clear differences between various flow regimes. WVF
and MWV have been clearly decomposed and their transition sequences have been
made clear, especially that both modes disappear between R∗ = 21 and 22.

A new mode was found to appear after the WVF and MWV modes disappear.
From the decomposed velocity field, this mode is attributed to the fast variation
of velocity on the TVF rolls and is called the fast azimuthal mode. The transition
behaviour of this new mode was made clear by the form of the excitation curve of
this mode. It appears at R∗ = 23, reaches a maximum in its intensity at R∗ = 29 and
disappears at R∗ = 36.

At still higher Reynolds number, there remains no coherent structure in the flow
apart from the basic TVF and the broad-band components. Both Fourier spectra and
eigenvalue spectra exhibit no characteristic peak structure and are continuous. This
regime thus corresponds to TTV turbulence.

The characteristics of the continuous eigenvalue spectra were quantified using TEO
and global entropy and the flow transition has been investigated quantitatively. Recall
that TEO is the number of spatial modes containing 90% of the total energy. This
means that we are counting the number of participating spatial degree of freedom.
Global entropy indicates the degree of disorder of the flow state. The Reynolds number
variations of these quantities show a clear difference in the dynamical behaviour of
the different flow regimes. In particular, the transition to turbulence is fairly sharp,
appearing as a sudden jump in the TEO and global entropy, but the number of
participating modes is still too small to be countable. For this reason we classify the
flow as ‘soft’ turbulence. This nature is found for the range of R∗ < 100. Thus we
propose the following classification in the Taylor–Couette system: laminar (Couette)–
TVF–WVF–MWV–transition–soft turbulence–hard turbulence.

The author is grateful to M.-P. Chauve and P. Le Gal for a helpful discussion
on orthogonal decomposition analysis and to G. King for his assistance in the
computations, as well as fruitful discussions on the transition scheme.
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